Stanislav Vakaruk Vakaruk

  • Profesor
  • Data Scientist
Stanislav Vakaruk Vakaruk

Doctor en Inteligencia Artificial con especialización en Aprendizaje Profundo, con mención Cum Laude y Doctorado Internacional. Tengo 10 años de experiencia en el campo de la Ciencia de Datos, 4 años como investigador en Aprendizaje Profundo y 3 años como profesor en la Universidad Politécnica de Madrid. He participado en 7 proyectos de investigación europeos y soy autor de 7 publicaciones científicas en revistas reconocidas por el JCR. Mis principales áreas de investigación son: Machine Learning, Deep Learning, Forecasting y Redes de Computadoras.

Publicaciones científicas más destacadas

Deep learning methods for multi-horizon long-term forecasting of Harmful Algal Blooms. S Martín-Suazo, J Morón-López, S Vakaruk, A Karamchandani,. Knowledge-Based Systems 301, 112279. 2014.

Anticipatory analysis of AGV trajectory in a 5G network using machine learning. A Mozo, S Vakaruk, JE Sierra-García, A Pastor.Journal of Intelligent Manufacturing 35 (4), 1541-1569. 2024.

Using N-BEATS ensembles to predict automated guided vehicle deviation. A Karamchandani, A Mozo, S Vakaruk, S Gómez-Canaval. Applied Intelligence 53 (21), 26139-26204. 2023.

Contribuciones a la Aplicación de Machine Learning en Escenarios Novedosos de Tiempo Real. S Vakaruk. ETSI_Sistemas_Infor. 2023.

Transformers for multi-horizon forecasting in an industry 4.0 use case. S Vakaruk, A Karamchandani, JE Sierra-García, A Mozo. Sensors 23 (7), 3516. 2023.

Chlorophyll soft-sensor based on machine learning models for algal bloom predictions. A Mozo, J Morón-López, S Vakaruk, ÁG Pompa-Pernía. Scientific Reports 12 (1), 13529. 2022.

A Framework for Big Data Sovereignty: The European Industrial Data Space (EIDS). C Mertens, J Alonso, O Lázaro, C Palansuriya, G Böge, A Nizamis. Data Spaces, 201-226. 2022

Forecasting automated guided vehicle malfunctioning with deep learning in a 5G-based industry 4.0 scenario. S Vakaruk, JE Sierra-García, A Mozo, A Pastor. IEEE Communications Magazine 59 (11), 102-108. 2021.

A digital twin network for security training in 5G industrial environments. S Vakaruk, A Mozo, A Pastor, DR López. 2021 IEEE 1st International Conference on Digital Twins and Parallel. 2021.

SPIDER: ML Applied to 5G Network Cyber Range. S Vakaruk, A Mozo, A Pastor. European Conference on Networks and Communications & 6G Summit (EuCNC 2021). 2021.

Cloud-Scale SDN Network Security in TeraFlow. A Mozo, S Vakaruk, A Pastor, R Bobba, C Natalino, M Furdek, R Muñoz,. European Conference on Networks and Communications & 6G Summit (EuCNC 2021)

Detection of encrypted cryptomining malware connections with machine and deep learning. A Pastor, A Mozo, S Vakaruk, D Canavese, DR López, L Regano,. IEEE Access 8, 158036-158055. 2020.

Ultra-Scalable Simulations of Networks of Polarized Evolutionary Processors. S Gomez-Canaval, V Mitrana, M Paun, S Vararuk. Proceedings of the 3rd International Conference on Advances in Artificial. 2019.

High performance and scalable simulations of a bio-inspired computational model. S Gómez-Canaval, V Mitrana, M Păun, S Vararuk. 2019 International Conference on High Performance Computing & Simulation. 2019.

Towards quantitative networks of polarized evolutionary processors: A bio-inspired computational model with numerical evaluations. SG Canaval, K Jiménez, AO de la Puente, S Vakaruk. International Conference on Practical Applications of Agents and Multi-Agent. 2016.